Full text: Grundlagen einer Isogonalzentrik

78 
Grundlagen einer Isogonalzentrik. 
Addiert man hiezu dreimal das Quadrat des Radius, so er 
hält man: 
AU 2 + BU 2 + CU 2 = | r 2 -f i (a 2 + b 2 -f c 2 ). 
166. Man soll den Abstand des Schwerpols von U bestimmen. 
Es ist 
2Aü*J^rOB % =Ati*+r*\also2a AU'+^a*OH*=a*.AH*+a*r* 
2 2 
2BU 2 +^OII 2 =BH 2 -\-r 2 , 2b 2 .BU 2 A-\b\OH 2 =b 2 .BH 2 +b 2 r 2 - 
2CU 2 +\oH 2 =CH 2 A-r\ 2c 2 .CU 2 -\- l c. OH 2 =c 2 . CH 2 +c 2 r 2 ■ 
also 2 O 2 . AU 2 + b 2 . BU 2 -f- c 2 . CU 2 ) -+- I (a 2 4- b 2 4- c 2 ) 
OH 2 = a 2 . All 2 4- & 2 . 5# 2 H- C 2 . C/i 2 r 2 (a 2 + 6 2 4- c 2 ); 
aber nach 142 ist a 2 . All 2 4- 6 2 . BH 2 4- c 2 . CH 2 = 4r 2 
(a 2 -j- b 2 -f- c 2 ) —■ (a 4 4- 4- c 4 ), 
also 2 (a 2 . AU 2 -h b 2 . BU 2 A- c 2 . CU 2 ) 4- -(,a 2 -f 6 2 4- c 2 ). 
(9 r 2 — (a 2 -4-i 2 4-c 2 )) = 5r 2 (a 2 4- b 2 4- c 2 ) — (a 4 4- & 4 4- c 4 ); also 
a 2 . AU 2 + 6 2 . BU 2 4- c 2 . CU 2 = ± . (a 2 -f & 2 +c 2 ) 2 -± • 
(a 4 + & 4 + c 4 ) + — r 2 (a 2 4- & 2 + c 2 ). 
Da aber () Schwerpunkt von A a 2 , J5 b 2 , C c 2 , so ist 
a 2 .4?7 2 -f 6 2 . W 2 -f c 2 . CU 2 = (a 2 -f b 2 -f c 2 ) . QU 2 -f 
3 a 2 b 2 c 2 
0^4- Z> 2 -f c 2 ’ alS0 
1 a 4 4- i 4 4- c 4 
QU = — (a 2 4- Z> 2 4- c 2 ) 
2 a 2 4- & 2 4- c 2 4 7 
3 a 2 b 2 c 2 
(a 2 -}- Z> 2 4- c 2 ) 2 ’ 
Die Potenz des Schwerpols Q in Bezug auf den Feuerbach'schen 
Kreis ist also 
1 a 4 4- 6 4 4- c 4 
H-3 
a 2 b 2 c 2 
2 ‘ a 2 4“ b 2 4~ c 2 ~* * (a 2 4-6 8 4-c s ) 2 4 
(a 2 4-& 2 -}-c 2 ),
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.