4
et oc
International Archives of the Photogrammetry, Remote
Figure 8: Border set and skeleton
Figure 9: Skeleton
Sensing and Spatial Information Scie
nces, Vol XXXV, Part B4. Istanbul 2004
8 DISCUSSION
|
We have shown in this paper an application of the natural neigh- |
bour interpolation for skeletonisation of scanned maps. We have
presented an example of use of this interpolation technique for |
the centreline extraction. Our future work will try to prove the |
use of this interpolation technique for automated conversion of |
|
scanned maps.
9 ACKNOWLEDGMENTS
This research work has received the financial support of NSERC
Discovery Grant and University of Calgary Starter Grant to the
first author and an Alberta Ingenuity Fund Fellowship to the sec-
ond author.
REFERENCES
Anton, F., Gold, C. and Mioc, D., 1998. Local coordinates and
interpolation in a Voronoi diagram for a set of points and line seg-
ments. In: The Voronoi Conference on Analytic Number Theory
and Space Tillings, pp. 9-12.
Foley, J. D., van Dam, A. Feiner, S. K. and Hughes, J. F,
1996. Computer graphics (2nd ed. in C): principles and practice.
Addison-Wesley Longman Publishing Co., [nc.
Gold, C., 1999. Crust and anti-crust: A one-step boundary and
skeleton extraction algorithm. In: Proc. 15th Annu. ACM Sym-
pos. Comput. Geom., pp. 189-196.
Surface modelling with guar-
Gold, C. and Roos, T., 1994.
J. Niev-
anteed consistency - an object-based approach. In:
ergelt, T. Roos, H.-J. Schek and P. Widmayer (eds), Proceed
ings: IGIS'94: Geographic Information Systems,Monte Verita
Ascona, Switzerland, Lecture Notes in Computer Science, Vol.
884, Springer- Verlag, Berlin, pp. 70-87.
1994. Persistent spatial relations - a systems design
Gold, C. M.,
pp. 219-
objective. In: Proc. 6th Canad. Conf. Comput. Geom.,
224.
Guibas, L. J. and Stolfi, J., 1985. Primitives for the manipulation
of general subdivisions and the computation of Voronoi diagrams.
ACM Trans. Graph. 4(2), pp. 74-123.
Piper, B., 1993. Properties of local coordinates based on Dirich-
let tessellations. In: Geometric modelling, Springer, Vienna
pp. 227-239.
Sibson, R., 1980. A vector identity for the Dirichlet tes
Math. Proc. Camb. Phil. Soc. 87, pp. 151—155.
sselation.
Sibson, R., 1981. A brief description of natural neighbour inter
polation. In: V. Barnet (ed.), Interpreting Multivariate Data, John
Wiley & Sons, Chichester, pp. 21-36.
Skiena, S., 1997. The Algorithm Design Manual. Springer
Verlag, New York, NY.
1182
Al
Di:
Sys
of
aut
of
Th
In
we
Su]
RM
Res
wit.
DT
The
maj
/5(
La 1
un
tridi
sont
l'est
de |
géog
offre
num
(MN
Les
terra
de |
cour
visib
Les
pour
varié
phot
num.
Quoi
gagn
qu'a
phot
"im;