Full text: Reprints of papers (Part 4b)

x y 
REPORT OF COMMISSION V GV-23 
It may be seen that 
Xo z 0 vo = R 
xz; = R sin 6, 41 = R cos 6, 
and 
x1 — Ax 
tan (nı — An) = — — — 
Yi Ay 
Since R relates only to scale, we may put R=1, in which case, 
sin 0 — Ax' 
tamn(y— 29) = ———7 
cosf — ^v 
where 
Ax 
Ax’ = — = 
R 
Ay 
Ay = — 
R 
Expanding, 
(tan n — tan An)(cos 8 — Ay’) = (1 + tan n tan An)(sin 0 — Aa”) 
Here n=true angle and 0=observed angle. 
he 
tan » cos 0 — tan nAy’ — tan An cos 6 + tan AnA y” 
= sin # — Ax’ + tan n tan An sin® — tan y tan AgAx' 
> ~~ Se - : 3 
Fhe unknowns are An, Ax’, and Ay’. Collecting coefficients of common un- 
knowns, 
tan n cos 0 — sin 0 
= [tan An|(tan » sin 0 + cos 6) + [Ay' — tan AnAx'] tan 5 — (Ax' + tan AnA y”) 
Now 
Ax 
tan &y = — 
1 — Ay 
tan An — tan Anây" = Ax’ 
Therefore 
(Ax" + tan AnAy") = tan An 
) Letting 
Ay' — tan AnAx’ = v 
tan An =» 
a = tang 
b = tan n sin 0 + cos 0 — 1 
c = tan n cos 0 — sin 0 
^ dr 
 
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.