Full text: Proceedings, XXth congress (Part 4)

  
  
  
4 
et oc 
International Archives of the Photogrammetry, Remote 
Figure 8: Border set and skeleton 
  
Figure 9: Skeleton 
Sensing and Spatial Information Scie 
nces, Vol XXXV, Part B4. Istanbul 2004 
8 DISCUSSION 
| 
We have shown in this paper an application of the natural neigh- | 
bour interpolation for skeletonisation of scanned maps. We have 
presented an example of use of this interpolation technique for | 
the centreline extraction. Our future work will try to prove the | 
use of this interpolation technique for automated conversion of | 
| 
scanned maps. 
9 ACKNOWLEDGMENTS 
This research work has received the financial support of NSERC 
Discovery Grant and University of Calgary Starter Grant to the 
first author and an Alberta Ingenuity Fund Fellowship to the sec- 
ond author. 
REFERENCES 
Anton, F., Gold, C. and Mioc, D., 1998. Local coordinates and 
interpolation in a Voronoi diagram for a set of points and line seg- 
ments. In: The Voronoi Conference on Analytic Number Theory 
and Space Tillings, pp. 9-12. 
Foley, J. D., van Dam, A. Feiner, S. K. and Hughes, J. F, 
1996. Computer graphics (2nd ed. in C): principles and practice. 
Addison-Wesley Longman Publishing Co., [nc. 
Gold, C., 1999. Crust and anti-crust: A one-step boundary and 
skeleton extraction algorithm. In: Proc. 15th Annu. ACM Sym- 
pos. Comput. Geom., pp. 189-196. 
Surface modelling with guar- 
Gold, C. and Roos, T., 1994. 
J. Niev- 
  
anteed consistency - an object-based approach. In: 
ergelt, T. Roos, H.-J. Schek and P. Widmayer (eds), Proceed 
ings: IGIS'94: Geographic Information Systems,Monte Verita 
Ascona, Switzerland, Lecture Notes in Computer Science, Vol. 
884, Springer- Verlag, Berlin, pp. 70-87. 
1994. Persistent spatial relations - a systems design 
Gold, C. M., 
pp. 219- 
objective. In: Proc. 6th Canad. Conf. Comput. Geom., 
224. 
Guibas, L. J. and Stolfi, J., 1985. Primitives for the manipulation 
of general subdivisions and the computation of Voronoi diagrams. 
ACM Trans. Graph. 4(2), pp. 74-123. 
Piper, B., 1993. Properties of local coordinates based on Dirich- 
let tessellations. In: Geometric modelling, Springer, Vienna 
pp. 227-239. 
Sibson, R., 1980. A vector identity for the Dirichlet tes 
Math. Proc. Camb. Phil. Soc. 87, pp. 151—155. 
sselation. 
Sibson, R., 1981. A brief description of natural neighbour inter 
polation. In: V. Barnet (ed.), Interpreting Multivariate Data, John 
Wiley & Sons, Chichester, pp. 21-36. 
Skiena, S., 1997. The Algorithm Design Manual. Springer 
Verlag, New York, NY. 
1182 
Al 
Di: 
Sys 
of 
aut 
of 
Th 
In 
we 
Su] 
RM 
Res 
wit. 
DT 
The 
maj 
/5( 
La 1 
un 
tridi 
sont 
l'est 
de | 
géog 
offre 
num 
(MN 
Les 
terra 
de | 
cour 
visib 
Les 
pour 
varié 
phot 
num. 
Quoi 
gagn 
qu'a 
phot 
"im;
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.