Full text: Des Unvergleichlichen Archimedis Kunst-Bücher Oder Heutigs Tags befindliche Schrifften/ Aus dem Griechischen in das Hoch-Teutsche übersetzt/ und mit nohtwendigen Anmerkungen durch und durch erläutert

z 0.4 
r- 
m 
Ir 
I 
Wann so tvol der betvegliche Winkel als die betveg- 
liche Lini allerseits in dem jenigen Stand sich befinden, 
in tvelchem sie getvesen/ als bermittelst ihres Durchschnit- 
kes der Punct c beschrieben tvorden/ nehmlich in b ec 
und 2 c b z; und dann denen beyden gleichen e b und k d 
beyderseits enttveder die gemeine f b zugegeben/ oder e d 
benommentvird / somüssen auch dieSummeno oder Reste 
b c und k e auch einander gleich seyn. Und tveilen/ 
tvegen derer gleichlauffenden Lineen ec und a d, die bey- 
de Dreyekke bd a und be c ( Rrafft des 29sken im 
I. B. ) gleichwinklicht sind : so verhält sich ( Qaue des 
4ten im V I.) tvie b d ( das ist/ ke ) gegen d a, also b e 
( das ist / k d ) gegen e c ; und ist folgends das Rechtekf 
derer beyden füssersicn / aus ke in € c, dem Rechtekk 
beyder hitler aus kd in da , gleich / vermög des 
r 6denüm V I. 
_Aus welchem Beweisßß dann schließlichen 
erscheinet/ weil alle solche Kechtekke/ wie ke e; 
dem Rechtekke a d f, und folgends auch unter- 
einander gleich sind/ daß die / erklärter mas- 
sen beschriebene / krumme Lini / eben die jenigs 
(zuteutsch/ eine sbertreffeive Kegel Lict ) u Z.ru put 
zwey solche krumme Lineen durch einerley fortgesetzte Bewegung beschrie- 
ben zugleich betrachtet / eben die jenige / welche sie entgegen-geseltzte Kegel- 
schnitte ( Sectiones oppolitas ) geheissen haben : Und daß die unbewegliche 
Lini (k]) und der beschreibende Schenkel c f g) ihre/ so genannte;/ Unberühs 
rende ( alymptoti ) seyen/ und dieserihr Durchschnittspunct ( f) eben der jens 
Ye sey / den sie der ézyperbel / odep derer entctegen-gesetzten Kegelschnitte 
Beschreibungspunct ( centrum ) zu nennen pflegten : welche alte Nahmen 
dann (ausgenommen den lahmen KRegelschnitt ) wir ihnen deswegen noch 
ferner lassen / und das / von beyden Zwischenweiten ( ad und f d ) beschlos: 
sene Rechteff / oder eite/ demselben gleiche/ Vierung / der '5Yperbel Vers- 
mögen ( potentiam.) nennen wollen. 
Diesselbste Beschreibung der krummen Lini bezeuget / daß die Hyperbel und ihre unberüß- 
rende Lineen immer näher und näher/ und endlich fo nahe / zusammen kommen / daß ihre JZtvi- 
schentveite kleiner sey als jede andere / die nach Belieben gegeben tvird. Wofern aber jemand 
dessen einen getvissern Betveiß berlangete / so sey ( in dem obern Teihl der borigen Figur ) die 
gegebene Weite n o, auf die unberührende Lini f k senkrecht geseset. So man nun nimmet 
n p kleiner als n o, und machet,/ tie n P gegen a d, also d f gegen f e (bey k ;) aus € end- 
lich/ mit k h gleichlauffend/ ziehet e c gleich, n p ; so tvird ( vermög des 16den im V ].) das 
Rechtekk aus fe in n p , das ist / e c gleich seyn dem Rechtekk aus d f in a d. Welchem 
nach ( Krafft vorhergehender dritten Beerachrtung ) der Punct c in der Hyperbel seyn 
muß. Es ist aber c e gleich n p, und also kleiner als die gegebene n o. Derotvegen muß 
umb so viel mehr die/ aus c auf k k senkrecht gezogene Lisi/ das ist/ die Zwischentveite der Hy- 
perbel und ihrer Unberührenden,/ kleiner seyn als n o. 
Die 2. Folge. 
Und hieraus erscheinet zugleich/ daß alle gerade Lineen/ tvelche aus jeglichem / innerhalb 
des Winkels/ der des andern/tvelcher die Hyperbel umbfasset/ Scheiteltvinkelist/ genommenen 
Punct/ entweder durch den Beschreibungspunct t, oder sonsten durch eine derer unberähren. 
fihtu 
fbi 
iti 
ua 
jetsiu: 
MIA! 
bey. 
nich! 
ditt 
mc. 
Uk 
K 
tviti 
Ne 
Oe 
).11 
! 
|. 
f 
t 
[]
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.